Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 63

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Summaries of research and development activities by using supercomputer system of JAEA in FY2022 (April 1, 2022 - March 31, 2023)

HPC Technology Promotion Office

JAEA-Review 2023-018, 159 Pages, 2023/12

JAEA-Review-2023-018.pdf:13.62MB

Japan Atomic Energy Agency (JAEA) conducts research and development (R&D) in various fields related to nuclear power as a comprehensive institution of nuclear energy R&Ds, and utilizes computational science and technology in many activities. Over the past 10 years or so, the publication of papers utilizing computational science and technology at JAEA has accounted for about 20 percent of the total publications each fiscal year. The supercomputer system of JAEA has become an important infrastructure to support computational science and technology. In FY2022, the system was used for R&D of light water reactors, high-temperature gas reactors, and fast reactors to contribute to carbon neutrality as a priority issue, as well as for JAEA's major projects such as Various R&D related to nuclear science and technology, R&D related to the response to the accident at TEPCO's Fukushima Daiichi Nuclear Power Station, Development of technology for treatment and disposal of high-level radioactive waste, Support of nuclear safety regulation and nuclear disaster prevention, and safety research for this purpose. This report presents a great number of R&D results accomplished by using the system in FY2022, as well as user support, operational records and overviews of the system, and so on.

JAEA Reports

Summaries of research and development activities by using supercomputer system of JAEA in FY2021 (April 1, 2021 - March 31, 2022)

HPC Technology Promotion Office

JAEA-Review 2022-035, 219 Pages, 2023/01

JAEA-Review-2022-035.pdf:10.94MB

Japan Atomic Energy Agency (JAEA) conducts research and development (R&D) in various fields related to nuclear power as a comprehensive institution of nuclear energy R&Ds, and utilizes computational science and technology in many activities. As shown in the fact that about 20 percent of papers published by JAEA are concerned with R&D using computational science, the supercomputer system of JAEA has become an important infrastructure to support computational science and technology. In FY2021, the system was used for R&D aiming to restore Fukushima (environmental recovery and nuclear installation decommissioning) as a priority issue, as well as for JAEA's major projects such as research and development of fast reactor cycle technology, research for safety improvement in the field of nuclear energy, and basic nuclear science and engineering research. This report presents a great number of R&D results accomplished by using the system in FY2021, as well as user support, operational records and overviews of the system, and so on.

JAEA Reports

Summaries of research and development activities by using supercomputer system of JAEA in FY2020 (April 1, 2020 - March 31, 2021)

HPC Technology Promotion Office

JAEA-Review 2021-022, 187 Pages, 2022/01

JAEA-Review-2021-022.pdf:10.11MB

Japan Atomic Energy Agency (JAEA) conducts research and development (R&D) in various fields related to nuclear power as a comprehensive institution of nuclear energy R&Ds, and utilizes computational science and technology in many activities. As shown in the fact that about 20 percent of papers published by JAEA are concerned with R&D using computational science, the supercomputer system of JAEA has become an important infrastructure to support computational science and technology. In FY2020, the system was used for R&D aiming to restore Fukushima (environmental recovery and nuclear installation decommissioning) as a priority issue, as well as for JAEA's major projects such as research and development of fast reactor cycle technology, research for safety improvement in the field of nuclear energy, and basic nuclear science and engineering research. This report presents a great number of R&D results accomplished by using the system in FY2020, as well as user support, operational records and overviews of the system, and so on.

JAEA Reports

Summaries of research and development activities by using supercomputer system of JAEA in FY2019 (April 1, 2019 - March 31, 2020)

HPC Technology Promotion Office

JAEA-Review 2020-021, 215 Pages, 2021/02

JAEA-Review-2020-021.pdf:13.11MB

Japan Atomic Energy Agency (JAEA) conducts research and development (R&D) in various fields related to nuclear power as a comprehensive institution of nuclear energy R&Ds, and utilizes computational science and technology in many activities. As shown in the fact that about 20 percent of papers published by JAEA are concerned with R&D using computational science, the supercomputer system of JAEA has become an important infrastructure to support computational science and technology. In FY2019, the system was used for R&D aiming to restore Fukushima (environmental recovery and nuclear installation decommissioning) as a priority issue, as well as for JAEA's major projects such as research and development of fast reactor cycle technology, research for safety improvement in the field of nuclear energy, and basic nuclear science and engineering research. This report presents a great number of R&D results accomplished by using the system in FY2019, as well as user support, operational records and overviews of the system, and so on.

JAEA Reports

Summaries of research and development activities by using supercomputer system of JAEA in FY2018 (April 1, 2018 - March 31, 2019)

HPC Technology Promotion Office

JAEA-Review 2019-017, 182 Pages, 2020/01

JAEA-Review-2019-017.pdf:11.11MB

Japan Atomic Energy Agency (JAEA) conducts research and development (R&D) in various fields related to nuclear power as a comprehensive institution of nuclear energy R&Ds, and utilizes computational science and technology in many activities. As shown in the fact that about 20 percent of papers published by JAEA are concerned with R&D using computational science, the supercomputer system of JAEA has become an important infrastructure to support computational science and technology. In FY2018, the system was used for R&D aiming to restore Fukushima (environmental recovery and nuclear installation decommissioning) as a priority issue, as well as for JAEA's major projects such as research and development of fast reactor cycle technology, research for safety improvement in the field of nuclear energy, and basic nuclear science and engineering research. This report presents a great number of R&D results accomplished by using the system in FY2018, as well as user support, operational records and overviews of the system, and so on.

JAEA Reports

Summaries of research and development activities by using supercomputer system of JAEA in FY2017 (April 1, 2017 - March 31, 2018)

Information Technology Systems' Management and Operating Office

JAEA-Review 2018-018, 167 Pages, 2019/02

JAEA-Review-2018-018.pdf:34.23MB

Japan Atomic Energy Agency (JAEA) conducts research and development (R&D) in various fields related to nuclear power and utilizes computational science and technology in many activities. As shown in the fact that about 20 percent of papers published by JAEA are concerned with R&D using computational science, the supercomputer system of JAEA has become an important infrastructure to support computational science and technology. In FY2017, the system was used for R&D aiming to restore Fukushima (environmental recovery and nuclear installation decommissioning) as a priority issue, and for JAEA's major projects such as R&D of fast reactor cycle technology, research for safety improvement in the field of nuclear energy, and basic nuclear science and engineering research. This report presents a great number of R&D results accomplished by using the system in FY2017, as well as user support, operational records and overviews of the system, and so on.

JAEA Reports

Summaries of research and development activities by using supercomputer system of JAEA in FY2016 (April 1, 2016 - March 31, 2017)

Information Technology Systems' Management and Operating Office

JAEA-Review 2017-023, 157 Pages, 2018/02

JAEA-Review-2017-023.pdf:22.68MB

Japan Atomic Energy Agency (JAEA) conducts research and development (R&D) in various fields related to nuclear power as a comprehensive institution of nuclear energy R&Ds, and utilizes computational science and technology in many activities. As shown in the fact that about 20% of papers published by JAEA are concerned with R&D using computational science, the supercomputer system of JAEA has become an important infrastructure to support computational science and technology. In FY2016, the system was used for R&D aiming to restore Fukushima (environmental recovery and nuclear installation decommissioning) as a priority issue, as well as for JAEA's major projects such as research and development of fast reactor cycle technology, research for safety improvement in the field of nuclear energy, and basic nuclear science and engineering research. This report presents a great number of R&D results accomplished by using the system in FY2016, as well as user support, operational records and overviews of the system, and so on.

JAEA Reports

Summaries of research and development activities by using supercomputer system of JAEA in FY2014 (April 1, 2014 - March 31, 2015)

Information Technology Systems' Management and Operating Office

JAEA-Review 2015-028, 229 Pages, 2016/02

JAEA-Review-2015-028.pdf:53.37MB

Japan Atomic Energy Agency (JAEA) conducts research and development (R&D) in various fields related to nuclear power as a comprehensive institution of nuclear energy R&Ds, and utilizes computational science and technology in many activities. As shown in the fact that about 20% of papers published by JAEA are concerned with R&D using computational science, the supercomputer system of JAEA has become an important infrastructure to support computational science and technology. In FY2014, the system was used. For R&D aiming to restore Fukushima (nuclear plant decommissioning and environmental restoration) as a priority issue, as well as for JAEA's major projects such as Fast Reactor Cycle System, Fusion R&D and Quantum Beam Science. This report presents a great amount of R&D results accomplished by using the system in FY2014, as well as user support, operational records and overviews of the system, and so on.

JAEA Reports

Summaries of research and development activities by using supercomputer system of JAEA in FY2013 (April 1, 2013 - March 31, 2014)

Information Technology Systems' Management and Operating Office

JAEA-Review 2014-043, 241 Pages, 2015/02

JAEA-Review-2014-043.pdf:102.18MB

Japan Atomic Energy Agency (JAEA) conducts research and development (R&D) in various fields related to nuclear power as a comprehensive institution of nuclear energy R&Ds, and utilizes computational science and technology in many activities. About 20% of papers published by JAEA are concerned with R&D using computational science, the supercomputer system of JAEA has become an important infrastructure to support computational science and technology utilization. In FY2013, the system was used not only for JAEA's major projects such as Fast Reactor Cycle System, Fusion R&D and Quantum Beam Science, but also for R&D aiming to restore Fukushima (nuclear plant decommissioning and environmental restoration) as apriority issue. This report presents a great amount of R&D results accomplished by using the system in FY2013, as well as user support, operational records and overviews of the system, and so on.

Journal Articles

Present status of PSA methodology development for MOX fuel fabrication facilities

Tamaki, Hitoshi; Hamaguchi, Yoshikane; Yoshida, Kazuo; Muramatsu, Ken

Proceedings of International Conference on Nuclear Energy System for Future Generation and Global Sustainability (GLOBAL 2005) (CD-ROM), 6 Pages, 2005/10

A PSA procedure for MOX fuel fabrication facilities is being developed at the JAERI. This procedure consists of four steps, which are hazard analysis, accident scenario analysis, frequency evaluation and consequence evaluation. The proposed procedure is characterized by the hazard analysis step. The Hazard analysis step consists of two sub-steps. In the first sub-step, a variety of functions of equipment composing the facility are analyzed to identify potential abnormal events exhaustively. In the second sub-step, these potential events are screened to select abnormal events by using a risk matrix based on the rough estimation of likelihood and maximum unmitigated release of radioactive material. One of the unique technical issues in this research is the estimation of likelihood of criticality event. A method is also proposed as a part of PSA procedure taking into consideration of failure of a computerized control system for MOX powder handling process. The applicability of the PSA procedure was demonstrated through the trial application of it to a model plant of MOX fuel fabrication facility.

JAEA Reports

Rod displacement measurements by X-ray CT and its impact on thermal-hydraulics in tight-lattice rod bundle (Joint research)

Mitsutake, Toru*; Katsuyama, Kozo*; Misawa, Takeharu; Nagamine, Tsuyoshi*; Kureta, Masatoshi*; Matsumoto, Shinichiro*; Akimoto, Hajime

JAERI-Tech 2005-034, 55 Pages, 2005/06

JAERI-Tech-2005-034.pdf:7.76MB

In tight-lattice bundles with about 1mm gap between rods, a rod displacement might affect thermal-hydraulic characteristics. The inside-structure observation of the simulated seven-rod bundle of RMWR was made with the high-energy X-ray CT of JNC. The CT view assured that the rod position was almost the same as expected by design. In the heat transfer experiments, all thermocouples on the center rod showed almost simultaneous BT-induced temperature increase and on the same axial heights showed quite similar time-variation behaviors in the vapor cooling heat transfer regime. It showed that the effect of the geometrical asymmetry was small on the BT characteristics. The calculated critical power by subchannel analysis with the input of the CT measured rod position was smaller by about 5% than that with the designed rod position. It concluded that the error in the calculated critical power was attributable not to the asymmetry in the rod position, but to the models in the subchannel analysis code.

Journal Articles

Towards to realize a quake-proof information control and management system for nuclear power plant

Nakajima, Norihiro; Kimura, Hideo; Higuchi, Kenji; Aoyagi, Tetsuo; Suzuki, Yoshio; Hirayama, Toshio; Yagawa, Genki

Dai-23-Kai Nihon Shimyureshon Gakkai Taikai Happyo Rombunshu, p.117 - 120, 2004/06

The pablic acceptance of nuclear power plants operations requests information of status for the safety and ease. Previous technology in computational scinece is generarlly carried out the analysis as an uniform structure, although the plants are assembled by thousand of parts. The proposed approach is to develope assembled structural analysis and fluid/heat analyis in assembled structures under the natural and actual environmnet such as daily operation, small quakeing which does not induce shut down procedure, and so on.

Journal Articles

In the case of Japan Atomic Energy Research Institute

Azumi, Masafumi

Purazuma, Kaku Yugo Gakkai-Shi, 80(5), p.378 - 381, 2004/05

Progress of large scale scientific simulation environment in JAERI is briefly described. The expansion of fusion simulation science have been played a key role in the increasing performances of super computers and computer network system in JAERI. Both scalar parallel and vector parallel computer systems are now working in Naka and Tokai sites respectively and, particle and fluid simulation codes developed under the fusion simulation project, NEXT, are running on each system. The storage grid system has been also successfully developed for the effective visualization analysis by remote users. Fusion research is going to enter the new phase of ITER, and the need for the super computer system with higher performance are increasing more than as ever along with the development of reliable simulation models.

JAEA Reports

Journal Articles

Computer code system for structural analysis of radioactive materials transport

; *; *

PATRAM 95: 11th Int. Conf. on the Packaging and Transportation of Radioactive Materials, 3, p.1174 - 1181, 1996/00

no abstracts in English

63 (Records 1-20 displayed on this page)